Author Archives: Adminteich

TDWI Webinar Review: Putting Machine Learning to Work in Your Enterprise

It’s been a while since I watched a webinar, but since business intelligence (BI) and (AI) are overlapping areas of interest, I watched Tuesday’s TDWI webinar on Machine Learning (ML). As the definition of machine learning expands out of the pure AI because of BI’s advanced analytics, it’s interesting to see where people are going with the subject.

The host was Fern Halper, VP Research, at TDWI. The guests were:

  • Mike Gualtieri, VP, Forrester,
  • Askhok Swaminathan, Senior Director, Product Management, SAP,
  • Chandran Saravana, Senior Director, Advanced Analytics, SAP.

Ms. Halper began with a short presentation including her definition of ML as “Enabling computers to learn patterns with minimal human intervention.” It’s a bit different than the last time I reviewed one of her webinars, but that’s ok because my definition is also evolving. I’ve decided to use my own definition, “Technology that can investigate data in an environment of uncertainty and make decisions or provide predictions that inform the actions of the machine or people in that environment.” Note that I differ from my past, purist, view, of the machine learning and adjusting algorithms. I’ve done so because we have to adapt to the market. As BI analytics have advanced to provide great insight in data discovery, predictive analytics and more, many areas of BI and the purist area of learning have overlapped. Learning patterns can happen through pure statistical analysis and through self-adaptive algorithms in AI based machines.

The most interesting part of Fern Halper’s segment was a great chart showing the results of a survey asking about the importance of different business drivers behind ML initiatives. What makes the chart interesting, as you can see, is that it splits results between those groups investigating ML and those who are actively using it.

What her research shows is that while the highest segments for the active categories are customer related, once companies have seen the benefits of ML, the advantages of it for almost all the other areas jump significantly over views held during the investigation phase.

A panel discussion then proceeded, with Ms. Halper asking what sounded like pre-discussed questions (especially considering the included and relevant slides) to the three panelists. The statements by the two SAP folks weren’t bad, they were just very standard and lacked any strong differentiators. SAP is clearly building an architecture to leverage ML using their environment, but there weren’t case studies and I felt the integration between the SAP pieces didn’t bubble up to the business level.

The reason to listen to this segment is Mr. Gualtieri. He was very clear and focused on his message. While I quibble with some of the things he said about data scientists, that soap box isn’t for here. He gave a nice overview of the evolving state of ML for enterprise. The most important part of that might have been missed by folks, so I’ll bring it up here.

Yes, TensorFlow, R, Python and other tools provide frameworks for machine learning implementations, but they’re still at a very technical level. They aren’t for business analysts and management. He mentioned that the next generation of tools are starting to arrive, one that, just like the advent of BI, will allow people with less technical experience to more quickly use models in and gain insights from machine learning.

That’s how new technology grows, and I’d like to see TDWI focus on some of the new tools.

Summary

This was a good webinar, worth the time for those of you who are interested in a basic discussion of where machine learning is within the enterprise landscape.

Cloudera Now, a mini-conference on data, analytics and machine learning, is a good overview

Cloudera held a pretty impressive web event this morning. It was a mini-conference, with keynotes, some breakout tracks and even a small vendor area. The event was called Cloudera Now, and the link is the registration one. I’ll update it if they change once it’s VOD.

The primary purpose was to present Cloudera as the company for data support in the rapidly growing field of Machine Learning (ML). Given the state of the industry, I’ll say it was a success.

As someone who has an MS focused on artificial intelligence (ancient times…) and has kept up with it, there were holes, but the presentations I watched did set the picture for people who are now hearing about it as a growing topic.

The cleanest overview was a keynote presentation by Tom Davenport, Professor of IT and Management, Babson College. That’s worth registering for those who want to get a well presented overview.

Right after that, he and Amy O’Conner, Big Data Evangelist at Cloudera, had a small session that was interesting. On the amusing side, I like how people are finally beginning to admit that, as Amy mentioned, that the data scientist might not be defined as just one person. I’ll make a fun “I told you so” comment by pointing to an article I published more than three years ago: The Myth of the Data Scientist.

After the keynotes, there were three session of presentations, each with three seminars from which to choose. The three I attended were just ok, as they all dove too quickly into the product pitches. Given the higher level context of the whole event, I would have liked them all to spent more time discussing the market and concepts far longer, and then had much briefer pitch towards the end of the presentations. In addition, they seem too addicted to the word “legacy,” without some of them really knowing what that meant or even, in one case, getting it right.

However, those were minor problems given what Cloudera attempted. For those business people interested in hearing about the growing intersection between data, analytics, and machine learning, go to Cloudera’s site and take some time to check out Cloudera Now.

TDWI, CTG & SAP Webinar: Come for the misrepresentation of machine learning, stay for the fantastic case study

The webinar I’m going to review is worth seeing for one reason: The Covenant Transportation Group case study is a fantastic example of what’s going on in BI today. It’s worth the time. IMO, skip the first and third presenters for the reasons described below.

Machine Learning – Yeah, Right…

I usually like Fern Halper’s TDWI presentations. They’re usually cogent and make sense. This, sadly, was why the word “usually” exists. The title of the presentation was “Machine learning – What’s all the hype about?” and Ms. Halper certainly provided the hype.

She started off with a definition of machine learning: “Field of study that gives computers the ability to learn without being explicitly programmed,” by Arthur Samuel (1959). The problem with the rest of the presentation is that’s still true but the TDWI analyst bought into the BI hype that the definition has changed. She presents it now as complex analytics and “Enabling computers to learn patterns.” No, it’s not – except in our sector as people and companies try to jump on the machine learning bandwagon.

Our computers, at all levels of hardware, networking and software are far faster than even a decade ago. That allows for more complex algorithms to be run. That we can now analyze information much faster doesn’t suddenly make it “machine learning.”

There’s also the problem that seems to exist with many, that of conflating artificial intelligence (AI) with expert systems. AI is simply what we don’t know about intelligence and are trying to learn how to program. When I studied AI in the 80s, robotics and vision were just becoming well known enough to be their own disciplines and left the main lump of AI problems. Natural Language Processing (NLP) was starting to do the same.

Yet another main problem I’ll discuss is another conflation of analytics and learning. Fern Harper listed and mentioned, more than once, the “machine learning algorithms.” tdwi machin learning techniques

Note that all except neural networks are just algorithms that were defined and programmed long before machine learning. Machine learning is the ability of the software to decide which to use, how to change percentages in decision tree branches and other autonomous decisions that directly change the algorithm. It’s not the algorithm running fast and “finding things.”

Neural networks? They’re not even an algorithm, they’re only a way to process information. Any of the algorithms could run in a neural network architecture. The neural network is software that imitates brains and uses multiple simple nodes. Teaching a neural network any of the algorithms is how they work.

Covenant Transportation Group – A Great Analytics Case Study

So forget what they tried to pitch you about machine learning. The heart of the webinar was a presentation by Chris Orban, VP, Advanced Analytics, Covenant Transportation Group (CTG), and that was worth the price of admission. It was a great example of how modern analytics can solve complex problems.

CTG is a holding company for a number of transportation firms. Logistics is a KPI. There were two main issues discussed, but worthy of mention.

The first example was the basic issue of travel routing. It’s one thing to plan routes based on expected weather. It’s quite another to change plans on the fly when weather or other road conditions (accidents, construction and more) crop up. The ability for modern systems to bring in large volumes of data, including weather, traffic and geospatial information, means CTG is able to improve driver safety and optimize travel time through rapid analysis and communications.

The second example was mentioned in the previous sentence: Driver safety. CTG, and the industry as a hole, has enormous driver turnover. That costs money and increases safety risks. They use algorithms to identify problem indicators that help identify potential driver problems before they occur, allowing both the drivers and companies to take corrective actions. A key point Chris mentions is that communications also helps build the relationships that also help lower driver turnover.

Forget that nothing he mentioned was machine learning. CTG is a great case study about the leading edge of predictive analytics and real-time (real world, real-time, that is) BI.

SAP

SAP was the webinar sponsor, so David Judge, VP and Leonardo Evangelist, SAP, wrapped up the webinar. I was hoping he’d address SAP’s machine learning, to see if it’s the real definition of the phrase or only more hype. Unfortunately, we didn’t get that.

SAP has rolled out their Leonardo initiative. It’s a pitch for SAP to lump all the buzzwords under a brand, claiming to link machine learning, data intelligence, block chain, big data, Internet of Things and analytics all under one umbrella. Mr. Judge spent his time pitching that concept and not talking about machine learning.

The CTG case study makes is clear that SAP is supporting some great analytics, so they’re definitely worth looking at. Machine learning? Still a big question mark.

I did follow up with an email to him and I’ll let folks know if I hear anything informative.