Category Archives: Business Intelligence

TDWI / Actuate Webinar on Visualization: Not much there

Maybe it’s because of the TDWI conference now going on in San Diego, but this morning’s webinar on “Making Data Beautiful for Business Users” seemed a bit of an afterthought. The presenters were Dave Stodder, TDWI Director of Research, and Allen Bonde, VP Product Marketing and Innovation, Actuate. There were a few interesting moments, but not a lot of even basic content.

Dave Stodder began with a whole bunch of quotes from other people. I admit, it’s a quick way to put together a presentation, but then you should paraphrase and explain why the quotes matter rather than just reading them verbatim – we, the audience, are already doing that.

However, then he got to the three main goals of improving visualization in BI:

  • Improving self-service
  • Shortening the path to insight
  • Advancing business agility

To be honest, those are accurate but also valid for every other point in reporting throughout history. Businesses always want to enable decision makers to help make more accurate and timely decisions through better information.

What followed was one of the keys to TDWI success: An interesting slide based on one of their surveys.TDWI Visualization ROI Focus slide

Improved operational efficiency was a clear number one. The problem is that the data is most likely from IT respondents rather than from business users. I asked the question about that but it wasn’t answered. I predict that if you asked business users you’d find the second two items, faster response and identify new opportunities, would be at the top.

One important point Dave Stodder made was about alert fatigue. It’s tempting to have visualizations and other tactics that alert anytime things change, but too many alerts mean people stop paying attention. It reminded me of my days as a sales engineer, back in the days of pagers. Another SE and I had to sit down one of the sales people and explain that if he appended 911 to every page then nothing was important.

The only part purely focused on visualizations were two slides. One was just a collection of a few visualization types and the other was another TDWI survey about which visualization types are currently being implemented. There wasn’t a discussion of the appropriateness of the ones being used the most, any reason to better focus on some being ignored, or any discussion about how many are provided by packaged BI tools versus are home grown by the supposedly valuable data scientists.

Allen Bonde then took over and didn’t focus on visualization. He gave a rather generic Actuate sales pitch, mentioning platforms built for scale, the importance of an open community and didn’t show any visuals on visualization.

It wasn’t that the presentation was terrible, it’s only that it was far too generic. What was said about visualizations could be said about just about any reporting and there wasn’t really any direct focus on visualization. It’s one thing to quote Tufte, it’s another to have a discussion about current tools and what’s coming. That later was missed.

Maybe after the conference we’ll see another webinar with clearer focus.

SQL v Hadoop: The Wrong Conversation

“No SQL!”

“Hadoop doesn’t require you to work in SQL!”

The claims are everywhere, but do they mean anything? To ruin the suspense: No.

There seems to be a big misunderstanding or a big lack of communications in the realm of big data. I keep hearing company after company compare Hadoop to SQL, claiming the former is somehow better than the later. Sadly, that’s comparing apples to screwdrivers.

Hadoop is a database technology. It’s based on MPP architecture for the Cloud. Hadoop compares to flat files, relational databases and other methods for storing information in structures.

SQL is an query language. It’s similar to an API in that it’s just a way to communicate with the data source. Long ago, in the dawn of time, SQL was tightly tied to DB2 and the relational environment that spawned the syntax. However, along came the 1980s, Unix servers and PCs, and the need to access lots of different data sources and an unwillingness to have to have very separate query languages for each data source.

Along came ODBC to the rescue. It standardized core query syntax using the SQL paradigm and allowed, under the covers, the ODBC developer to use an API to translate almost standard queries into the language of each data source. It extended SQL to access new things.

In the meantime, as RDBMS technologies began to try to find ways around the basic limitations of relational databases, the companies added extra features such as stored procedures that extended SQL even further from the origins of basic definition and query of relational structures.

So now we have a mass of coders who have only worked with large, primarily Web oriented databases using non-RDBMS technology. No surprise, they had to code their own interfaces and queries, getting into the details of the newer systems. At the same time, they probably brushed through and overview of RDBMS and SQL in school and then never used it again.

That meant a misunderstanding of the difference between database and query. Therefore, the message of No SQL will retard their progress in integrating their solutions with the existing IT data infrastructure.

There’s a large need for people who can work with Hadoop and other younger data sources. There’s also a vast pool of people who know SQL. Yes, there will always be a need for Hadoop gurus just as there is for every technology, but the folks wanting to get information out of data sources don’t need to know the data sources, they need to get the information – and they know SQL.

A number of vendors have figured that out and are now offering SQL as a means to access Hadoop. It’s a natural fit, an extension of what the people pushing Hadoop are hoping to achieve. Hadoop and other distributed, non-row based architectures are there to expand knowledge. They’re great ways to better understand the vast body of data coming in from many new sources. However, until you can get that data to the business knowledge worker, it’s not information. SQL is the clearest way to quickly bridge that gap.

The people who realize that it’s not an either/or decision, who understand that Hadoop and SQL not only can but should work together are the people who will drive their companies forward by quickly addressing real business needs.

SQL v Hadoop is the wrong conversation. SQL and Hadoop is the right one.

Webinar: IBM, Actuate and Cirro describe faster analytics

Today a webinar was hosted by Database Trend and Applications. While there are important things to talk about, I’ll start with the amusing point of the inverse relationship between company size and presenter title found in every webinar, but wonderfully on display here. The three presenters were:

  • Mark Theissen, CEO, Cirro
  • Peter Hoopes, VP/GM, BIRT Analytics Division, Actuate
  • Amit Patel, Program Director, Data Warehouse Solutions Marketing, IBM

The topic was “Accelerating your Analytics for Faster Insights.” That is a lot to cover in less than an hour, made more brief by a tag team of three people from different companies. I must say I was pleasantly surprised with how well they integrated their messages.

Mark Theissen was up first. There were a lot of fancy names for what Cirro does, but think ETL as it’s much easier. Mark’s point is that no single repository can handle all enterprise data even if that made sense. Cirro’s goal is to provide on-demand distributed analytics, using federation to link multiple data sources in order to help businesses analyze more complete information. It’s a strong point people have forgotten in the last few years during the typical “the latest craze will solve everything” focus on Hadoop and minimizing the role of getting to multiple sources.

Peter Hoopes then followed to talk about doing the analytics. One phrase he used should be discussed in more detail: “speed wins.” So many people are focused on the admittedly important area of immediate retail feedback on the web and with mobile devices. There, yes, speed can win. However, not always. Sometimes though helps too. That’s one reason why complex analysis for high level business strategy and planning is different that putting an ad on a phone as you walk by a store. There are clear reasons for speed, even in analytics, but it should not be the only focus in a BI decision.

IBM’s Amit Patel then came on to discuss the meat of the matter: DB2 Blu. This is IBM’s foray into in-memory, columnar databases. It’s a critical ad to the product line. There are advantages to in-memory that have created a need for all major players to have an offering, and IBM does the “me too!” well; but how does IBM differentiate itself?

As someone who understands the need for integration of transaction and analytic systems and agrees both need to co-exist, I was intrigued by what Amit had to say. Transactions going into normal DB2 environment while being shadowed into columnar BLU environment to speed analytics. Think about it: Transactions can still be managed with the row-oriented technologies best suited for them while the information is, in parallel, moved to the analytics database that happens to be in memory. It seems to be a good way to begin to blend the technologies and let each do what works best.

For a slightly techhie comment, I did like what Mr. Patel was saying about IBM’s management of memory and CPU. After all, while IBM is one of the largest software vendors in the world, too many folks forget their hardware background. One quick mention in a sentence about “hardware vendors such as Intel and IBM…” was a great touch to add a message that can help IBM differentiate its knowledge of MPP from that of pure software companies. As a marketing guy, I smiled big time at the smooth way that was brought up.

Summary

The three presenters did a good job in pointing out that the heterogeneous nature of enterprise data isn’t going away, rather it’s expanding. Each company, in its own way, put forward how it helps address that complexity. Still, it takes three companies.

As the BI market continues to mature, the companies who manage to combine the enterprise information supply chain components most smoothly will succeed. Right now, there’s a message being presented by three players. Other competitors also partner for ETL, data storage and analytics. It sounds interesting, but the market’s still young. Look for more robust messages from single vendors to evolve.

IDC says business analytics an 89.6 billion (USD) market by 2018

For those who might have missed it, IDC published a press release last week pointing to strong growth in business analytics. That’s going to keep a lot of companies busy, good or not, but results will begin to weed out a number of them. A lot of companies, established and startup, are making a lot of promises to meet that demand but not all will do the right things.

I think we’ll see a shake-out begin to happen in the next 2-3 years, even with the demand.

HP Vertica at the BBBT: Technology v Solution

The latest BBBT presentation was from HP Vertica’s Will Cairns and Steve Sarsfield. I know it’s hard to miss HP’s presence in any market, but for those few of you who may have done so HP acquired Vertica in early 2011. Vertica is a columnar database focused on large data sources for analytics. Will and Steve were a good tag team, switching back and forth as need be; so unlike other presentation reviews I will rarely be noting who said what.

The smallest installation they mentioned runs on HP Vertica is 1.5 terabytes up to very large ones such as at Facebook, their largest customer. Without a doubt, HP plays at the larger end of the analytics market. They have a strong and powerful database and it seems HP’s hardware experience and Vertica’s database knowledge seems to have been integrated far better than other HP acquisitions in the previous decade.

The problem I often come back to discuss, whether talking about a startup or a company such as HP, is the issue of technical problems versus business solutions.

Will Cairns did say one thing that should be paid attention to by many who talk about unstructured data. His very accurate point is that “unstructured data doesn’t stay unstructured long.” We talk about conversations as unstructured, but to get information from those, we must part the syntax of sentences, look for key words and meaning, and extract semantics with meaning. Those items can then be similarly structured in order to compare, analyze and draw conclusions.

However, the weak spot in his eyes is his title. He constantly referred to “supporting data scientists” rather than supporting data science. As the programmers who know statistics create more and more packages that can analyze data, it’s the analytical capabilities being provided to business people that matters, not the people who call themselves data scientists who also just exist to serve the end business use.

One interesting techie note about their MPP database is that there isn’t an automatic lead node. While there’s no independent analysis for intelligence allocation of notes other than, it seems, basic load balancing, the idea that you can automatically define a lead node based on balancing, not before, does imply a good ability to manage distributed resources.

One thing I’ve asked a few folks who push columnar databases came up again in this presentation. They were talking about something called projections, which seemed to be ways to index the data for faster access. However, they claimed it’s not indexing but gave no clear explanation.

I then asked the question that always intrigues me. It’s clear that columnar databases have a great strength in analytics across records because indexes aren’t needed for columns, but it’s clear that both row and column based analyses have value, so getting a clearer picture how any database supports both would seem to be important. I pointed out that indexes in row-based databases exist to allow faster search of columns. The question is: What techniques are used to speed up row based searches in columnar databases if no indexes exist. They didn’t have an answer.

One slide that created a great conversation was one of the types of analytics and their definitions. Claudia Imhoff and others questioned the difference between predictive, prescriptive and pre-emptive analytics. While better clarity is definitely needed, the attempt is a great conversation starter for the industry.

HP Vertica - Hindsight to Foresight slide

Summary

HP Vertica seems to be a database that should be evaluated for large data volume analytics. However, they seem to have a focus on the technology not on why companies want the technology. There was no real discussion of results, or of partnerships with BI vendors to provide end user value. I expect that successful sales won’t be purely HP. They are focused purely on IT and programmers who are building very complex algorithms. They’ll need either a channel or ISV partner to round out the picture to an enterprise who needs to see the full business value chain.

It seems to be a very strong product, but only part of the solution.

TDWI, Claudia Imhoff and SAP: Data Architecture Matters

In a busy week for TDWI webinars, today’s presentation by Claudia Imhoff, Intelligent Solutions, and Lother Henkes, SAP, was about how the continuing discussion of the place in the data world for the data warehouse.

While many younger techies think the latest technology is a panacea and many older techies are far too skeptical for too long, the reality is that while the data warehouse is going nowhere, it has to integrate with the newer technologies to continue improving the information being provided to business knowledge workers.

One of Claudia’s early slides talked about data sources. While most people are focused on both the standard packaged software and the rush of non-structured data from the Web, call centers, etc, Claudia makes clear the item that companies are just beginning to realize and address: Sensor data is just as important as the rest and also driving data volumes. Business information continues to come from further afield and a wider variety of sources and all must be integrated.

Much of her talk, she mentioned, has come out of a couple of years of work between herself and Colin White, in formalizing the changing data architecture environment. Data warehouses are still the place for production reports and analytics, where data provenance and clarity are absolutely necessary while the techniques used on early stage data such as in streaming, Hadoop analytics, etc, are more exploratory and investigative. The duo posit that the combination of data integration, data management (including EDWs), data analysis and decision management are the “glue in the middle,” those things that bind sources, deployment and distribution technologies, and reporting and analytics options into a real system that provides value.

The picture they put together is good and Claudia Imhoff’s presentation should be looked at for a better understanding of where we are; but I wouldn’t be me if I didn’t have a couple of issues.

The first is a that she is a bit too enamored of mobile technology. It’s here and must be addressed, but statements such as “nobody has a desktop, everything is mobile” must be corrected. A JD Power survey last year showed that only 20% of tablets are used for work. On the other side, Forrester Research has pointed out a strong majority of business people are now using two devices for their information.

The issue for business intelligence is not that people are switching from desktops (including laptops in docking stations) but that smart providers of information need to build UIs that address the needs of large monitors, tablets and smartphones, addressing each device’s uniqueness while ensuring a similarity of user experience.

The second issue is a new term thrown out during the presentation. It’s “data refinery” and, as Claudia mentioned in her presentation, it’s the same thing others are calling a data swamp, data lake or numerous other terms. There’s an easy term everyone has used for years: Operational Data Store (ODS). I’m a marketing guy and I understand the urge for everyone to try to coin a term that will catch on, but it’s not needed in this case.

While it’s a separate topic (yeah, another concept for a column!), I’ll briefly point out my objections here. Even back in the late 1990s, during my brief sojourn at Informatica, we were talking about how the ODS can be used for more than only a place to use in order to quickly extract information from operational system so as not to stress them by doing transformations directly from such systems. They’ve always been a place to take an initial look at data before beginning transformations into star schemas and the like. The ODS hasn’t changed. What’s changed is the underlying technologies that support larger data stores and the higher level analytics that let us better analyze what’s in the ODS.

That brings us to one main point Claudia Imhoff made during her wrap-up, the section on business considerations. She points out that people really need to understand the importance of each data source and the data within it. Just because we can extract everything doesn’t mean we need to save everything. Her example was with customer sampling. Yes, you can get all the customer data, but only that which you need to narrow cast. For higher level decision making, those who understand confidence levels know that sampling can get to very high levels of certainty so sampling can still speed decision making and save costs. Disk space might be less expensive in the Cloud, but it’s not free. We’re in the job of helping businesses improve themselves, so we need to look at the bigger picture.

Her presentation was clearly strategic: We need to rethink, not reinvent, data modeling. Traditional techniques aren’t going away and neither are many of the new ones. Data management people need to understand how they combine.

No surprise, that was a great transition to Lother Henkes’ presentation. His key point is that SAP BW now can run on SAP HANA. It’s important even if all the capital letters look like shouting. HANA is SAP’s in memory, columnar database that’s their entry into the Cloud market to manage the high volumes of modern data. It’s a move to bridge the gap between the ODS and relational database arenas with one underlying infrastructure.

In such a brief webinar, it’s hard to see more than the theory, but it’s a clear move by SAP to do what Claudia Imhoff suggested, to take a fresh look at data models in order to understand how to better support the full range of data now being incorporated into business decision making.

TDWI and IBM on Predictive Analytics: A Tale of Two Focii

Usually I’m more impressed with the TDWI half of a sponsored webinar than by the corporate presentation. Today, that wasn’t the case. The subject was supposed to be about predictive analytics, but the usually clear and focused Fern Halper, TDWI Research Director for Advanced Analytics, wasn’t at her best.

Let’s start with her definition of predictive analytics: “A statistical or data mining solution consisting of algorithms and techniques that can be used on both structured and unstructured data to determine outcomes.” Data mining uses statistical analysis so I’m not quite sure why that needs to be mentioned. However, the bigger problem is at the other end of the definition. Predictive analysis can’t determine outcomes but it can suggest likely outcomes. The word “determine” is much to forceful to honestly describe prediction.

Ms. Halper’s presentation also, disappointingly compared to her usual focus, was primarily off topic. It dealt with the basics of current business intelligence. There was useful information, such as her referring to Dave Stodder’s numbers showing that only 31% of surveyed folks say their businesses have BI accessible to more than half their employees. The industry is growing, but slowly.

Then, when first turning to predictive analytics, Fern showed results of a survey question about who would be building predictive analytics. As she also mentioned it was a survey of people already doing it, there’s no surprise that business analysts and statisticians, the people doing it now, were the folks they felt would continue to do it. However, as the BI vendors including better analytics and other UI tools, it’s clear that predictive analytics will slowly move into the hands of the business knowledge worker just as other types of reporting have.

The key point of interest in her section of the presentation was the same I’ve been hearing from more and more vendors in recent months: The final admission that, yes, there are two different categories of folks using BI. There are the technical folks creating the links to sources, complex algorithms and reports and such, and there are the consumers, the business people who might build simple reports and tweak others but whose primary goal is to be able to make better business decisions.

This is where we turn to David Clement, Product Marketing Manager, BI & Predictive Analytics, IBM, the second presenter.

One of the first things out of the gate was that IBM doesn’t talk about predictive analytics but about forward looking business intelligence. While the first thought might be that we really don’t need yet another term, another way to build a new acronym, the phrase has some interesting meaning. It’s no surprise that a new industry where most companies are run by techies focused on technology, the analytics are the focus. However, why do analytics? This isn’t new. Companies don’t look at historic data for purely nostalgic reasons. Managers have always tried to make predictions based on history in order to better future performance. IBM’s turn of phrase puts the emphasis on forward looking, not how that forward look is aided.

The middle of his presentation was the typical dog and pony show with canned videos to show SPSS and IBM Cognos working together to provide forecasting. As with most demos, I didn’t really care.

What was interesting was the case study they discussed, apparel designer Elie Tahari. It’s a case study that should be studied by any retail company looking at predictive analytics as a 30% reduction of logistics costs is an eye catcher. What wasn’t clear is if that amount was from a starting point of zero BI or just adding predictive analytics on top of existing information.

What is clear is that IBM, a dinosaur in the eyes of most people in Silicon Valley and Boston, understands that businesses want BI and predictive analytics not because it’s cool or complex or anything else they often discuss – it’s to solve real business problems. That’s the message and IBM gets it. Folks tend to forget just how many years dinosaurs roamed the earth. While the younger BI companies are moving faster in technology, getting the ears of business people and building a solution that’s useful to them matters.

Summary

Fern Halper did a nice review of the basics about BI, but I think the TDWI view of predictive analytics is too much industry group think. It’s still aligned with technology as the focus, not the needs of business. IBM is pushing a message that matters to business, showing that it’s the business results that drive technology.

Businesses have been doing predictive analysis for a long time, as long as there’s been business. The advent of predictive analytics is just a continuance of the march of software to increase access to business information and improve the ability for business management to make timely and accurate decisions in the market place. The sooner the BI industry realize this and start focusing less on just how cool data scientists are and more on how cool it is for business to improve performance, the faster adoption of the technology will pick up.

DataHero at the BBBT: A Startup Getting It Right

First, on a tangent not directly focused on the product: Thank you Chris Neumann, CEO or DataHero. After hearing presenters from multiple companies consistently use the wrong words over the last few months, you used both premise and premises in the appropriate places. Thanks!

As you might gather, Wednesday’s presentation at the BBBT was by DataHero. A fairly young company, less than three years old, DataHero is focused on “Delivering a self-service Cloud BI solution that enables enterprise and SMB users to analyze and visualize their SAAS-based data without IT.”

Self-service BI is what almost all the players, both new and mature companies, are trying to provide these days. This just means they’re another player in attempting to help business knowledge workers to connect to data, analyze it and gather useful and actionable information without heavy intervention by business analysts and IT.

Cloud is also where everyone’s moving since it has so many advantages to all areas of software. DataHero, as a small company, isn’t just in the Cloud. They’ve smartly decided to begin by focusing on public Cloud applications with accessible API’s.

While that initially simplifies things, the necessity to handle complexity still exists in that world. Mike Ferguson, another BBT member analyst, pointed out that many of his clients have multiple, customized Salesforce.com instances and that’s bringing the upgrade issues seen in on-premises systems into the Cloud world. Chris acknowledges that and understands the need to grow to handle the issue, but knows that at the current size of DataHero there’s enough of a market for an initially more focused solution.

A strategic issue comes up with the basic nature of the Cloud. Mr. Neumann mentioned Cloud being opposed to centralized data, but that’s not quite so. Depending on how Cloud systems are set up, they can help or hinder centralization of data. However, right now he is accurate in that most of the growth of Cloud is departmental in nature. It’s also further blurring the always fuzzy line between enterprise and SMB markets by providing applications that both groups can leverage.

Another area that shows thought in their growth strategy is entry into new market. Chris is clear that they dip their toes into an arena, check reactions, and if positive then try to partner with as many companies in the space as possible to maintain neutrality. That means they don’t get locked into the first vendor the first client wants to work with, regardless of market control, leaving flexibility for customers. Their partner page, though young, clearly shows that strategy in effect. That’s a good move and I wish more vendors would think that way.

Another key growth issue is data cleansing. Right now, DataHero does none, expecting that the source system provides that capability. However, as clients use more and more source systems, there’s a cleansing need to clarify data clashes from different systems. That’s something the team at DataHero says they’re aware of while, again, that’s future growth (no time frames, as per legal sanity…).

The demo was very interesting. The other founder, Jeff Zabel, has a strong history in designing interfaces for software in vehicles, meaning usability really matters. That can be seen with a very clear and simple interface. It is easy to use. However, as pointed out by many other companies, 80% of business data has a location component and many DataHero vendors are far ahead of them in the area of geospatial information. That’s a key area they’ll have to improve.

Summary

DataHero is a young company with a young product. The key is that they aren’t just looking at their cool product and customizing solely on first sales. They have thought through a clear growth strategy. The BI tool is clearly fully fledged for the market segment they’ve chosen for initial release and they have thought through their growth strategy in far more detail than I’ve seen in other vendors who have presented at the BBBT.

If they execute their vision, and I see no reason why they wouldn’t, the folks at DataHero have a bright future.

Splunk at BBBT: Messages Need to Evolve Too

Our presenters last Friday at the BBBT were Brett Sheppard and Manish Jiandani from Splunk. The company was founded on understanding machine data and the presentation was full of that phrase and focus. However, machine data has a specific meaning and that’s not what Splunk does today. They speak about operational intelligence but the message needs to bubble up and take over.

Splunk has been public since 2012 and has over 1200 employees, something not many people realize. They were founded in 2004 to address the growing amount of machine data and the main goal the presenters showed is to “Make machine data accessible, usable and valuable to everyone.”

However, their presentation focused on Splunk’s ability to access IVR (Interactive Voice Recorder) and twitter transcripts and that’s not machine data. When questioned, they pointed out that they don’t do semantic analysis but focus on the timestamp and other machine generated data to understand operational flow. Still, while you might stretch and call that machine data, they did display doing some very simple analytics on the occurrence of keywords in text and that’s not it.

It’s clear that Splunk has successfully moved past pure machine data into a more robust operational intelligence solution. However, being techies from the Bay Area, it seems they still have their focus on the technology and its origins. They’re now pulling information from sources other than just machines, but are primarily analyzing the context of that information. As Suzanne Hoffman (@revenuemaven), another BBBT member analyst, pointed out during the presentation, they’re focused on the metadata associated with operational data and how to use that metadata to better understand operational processes.

Their demo was typical, nothing great but all the pieces there. The visualizations are simple and clear while they claim to be accessible to BI vendors for better analytics. However, note that they have a proprietary database and provide access through ODBC and an API. Mileage may vary.

There was also a confusing message in the claim that they’re not optimized for structured data. Machine data is structured. While it often doesn’t have clear field boundaries, there’s a clear structure and simple parsing lets you know what the fields and data are in the stream. What they really mean is it’s not optimal for RDBMS data. They suggest that you integrate Splunk and relational data downstream via a BI tool. That makes sense, but again they need to clarify and expose that information in a better way.

And then there’s the messaging nit. While talking about business as my main focus, technology presented with the incorrect words jars the educated audience. Splunk is not the first company nor will it, sadly, be the last, to have people who are confused about the difference between “premise” and “premises.” However, usually it’s only one person in a presentation. The slides and both presenters showed a corporate confusion that leads me to the premise that they’re not aware of how to properly present the difference between Cloud and on-premises solutions.

Hunk: On the Hadoop Bandwagon

Another messaging issue was the repeated mention of Hunk without an explanation. Only later in the presentation, they focused on it. Hunk’s their product to put the Splunk Enterprise technology on a Hadoop database. Let me be clear, it’s not just accessing Hadoop information for analysis but moving the storage from their proprietary system to Hadoop.

This is a smart move and helps address those customers who are heavily invested in Hadoop and, at least at the presentation level, they have a strong message about having the same functionality as in their core product, just residing on a different technology.

Note that this is not just helping the customer, it helps Splunk scale their own database in order to reach a wider range of customers. It’s a smart business move.

Security, Call Centers and Changing the Focus

The focus of their business message and a large group of customer slides is, no surprise, on network security and call center performance. The ability to look at the large amount of data and provide analysis of security anomalies means that Splunk is in the Gartner Magic Quadrant for SIEM (Security Information and Event Management).

In addition, IVR was mentioned earlier. That combined with other call center data allows Splunk to provide information that helps companies better understand and improve call center effectiveness. It’s a nice bridge from pure machine data to a more full featured data analysis.

That difference was shown by what I thought was the most enlightening customer slide, one about Tesco. For my primarily US readers, Tesco is a major grocery chain, with divisions focused on everything from the corner market to supermarkets. They are headquartered in England, are the major player in Europe and the second largest retailer by profit after Walmart.

As described, Tesco began using Splunk to analyze network and website performance, focused on the purely machine data concerns for performance. As they saw the benefit of the product to more areas, they expanded to customer revenue, online shopping cart data and other higher level business functions for analysis and improvement.

Summary

Splunk is a robust and growing company focused on providing operational intelligence. Unfortunately, their messaging is lagging their business. They still focus on machine data as the core message because that was their technical and business focus in the last decade. I have no doubts that they’ll keep growing, but a better clarification of their strategy, priorities and messages will help a wider market more quickly understand their benefits.

Datawatch at BBBT: Another contender and another question of message

Yesterday’s presentation to the BBBT was by Datawatch personnel Ben Plummer, CMO, and Jon Pilkington, VP Products. As they readily admit, they’re a company with a long history about which most people in the industry have never heard. They were founded in the 1980s and went public in the 1990s. Their focus is data visualization, but much of their business has been reseller and OEM agreements with companies including SAP, IBM and Tibco.

The core of their past success was with basic presentation of flat file information through their Monarch product. It was only with the acquisition of and initial integration with Panopticon in 2013, providing access to far more unstructured data that they rebranded as data visualization and began to push strongly into the BI space.

The demo was very standard. Everyone wants to show their design interface and how easy it is to build dashboards. Their demonstration was in the middle of the pack. The issue I had was the messaging. It’s no surprise that everyone claiming to be a visualization company needs to show visualization, but if you’re not one of the very flashy companies, your message about building your visualization should be different.

Datawatch’s strengths seem to be two-fold:

  • Access a very wide variety of data sources.
  • Access in motion data.
  • Full service from data access to presentation.

While Ben’s presentation talked about the importance of the Internet of Things and that real-time data is transactional, Jon’s presentation didn’t support those points. Datawatch is another company working to integrate structured and non-structured data and they seem to have a good focus on real-time, those need to be messages throughout their marketing, and that means in the demo.

Back from that tangent to the mainline. The third point is a major key. Major ETL and data warehouse vendors aren’t going away, but for basic BI, it adds costs and time to have to look at both and ETL and a data visualization tool which may not work together as the demoware indicates (A surprise, I know…). The companies who can get the full stream data supply chain from source to visualization can much more quickly and affordably add value for the business managers wanted better BI. I know it’s a fine line in messaging that and still working with vendors who overlap somewhat, but that’s why Coopetition was coined.

They seem to have a good vision but they haven’t worked to create a consistent and differentiated message. That could be because of resources and hopefully that will change. In February of this year Datawatch issued a common stock offering that netted them more cash. Hopefully some of that will be spent to focus on created strong and consistent marketing. That also includes such simple things as changing press releases to be visible from the PR link as html, not just pdfs.

Summary

I know you’re getting tired of hearing the following refrain, but here it is again. The issue is that I’ve heard this message before. The market is getting crowded with companies trying to support modern BI that’s a blend of structured and unstructured data. Technologists love to tweak products and think that minor, or even major technical issues that aren’t visibly relevant to the market should sell the product all by themselves. Just throw some key market points on top of them and claim you have no competitors because your technology is so cool.

BI and big data are cool right now and there are a large number of firms attempting to fill a need. Datawatch seems to have the foundations for a good, integrated platform from heterogeneous data access to visual presentation of actionable information. That message needs to quickly become stronger and clearer. This is a race. Being in shape isn’t enough, you have to have the right strategy and tactics to win the race. Datawatch has a chance, will they stumble or end up on the podium?